Arp2/3 complex inhibition radically alters lamellipodial actin architecture, suspended cell shape, and the cell spreading process
نویسندگان
چکیده
Recent studies have investigated the dendritic actin cytoskeleton of the cell edge's lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network.
منابع مشابه
Coronin 1B Coordinates Arp2/3 Complex and Cofilin Activities at the Leading Edge
Actin filament formation and turnover within the treadmilling actin filament array at the leading edge of migrating cells are interdependent and coupled, but the mechanisms coordinating these two activities are not understood. We report that Coronin 1B interacts simultaneously with Arp2/3 complex and Slingshot (SSH1L) phosphatase, two regulators of actin filament formation and turnover, respect...
متن کاملSpatial and Temporal Relationships between Actin-Filament Nucleation, Capping, and Disassembly
BACKGROUND The leading actin network in motile cells is composed of two compartments, the lamellipod and the lamellum. Construction of the lamellipod requires a set of conserved proteins that form a biochemical cycle. The timing of this cycle and the roles of its components in determining actin network architecture in vivo, however, are not well understood. RESULTS We performed fluorescent sp...
متن کاملGadkin negatively regulates cell spreading and motility via sequestration of the actin-nucleating ARP2/3 complex.
Regulation of actin dynamics is key to many cell physiological processes, ranging from protrusion formation and control of cell shape to cellular motility, endocytosis, and vesicle movement. The actin-related protein (ARP)2/3 complex is a major actin nucleator organizing branched filament networks in lamellipodial protrusions and during cell migration downstream of nucleation-promoting factors ...
متن کاملGMFβ controls branched actin content and lamellipodial retraction in fibroblasts
The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletio...
متن کاملArp2/3 complex ATP hydrolysis promotes lamellipodial actin network disassembly but is dispensable for assembly
We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2015